تاثير زيادة ارتفاع بدن السيارة على القوى الديناهوائية المتولدة

Effect of Increasing Ride Height on The Generated Aero-Dynamical Forces

https://doi.org/10.24237/djes.2017.10411

Authors

  • صادق عزيز حسين قسم تقنيات المكائن والمعدات, معهد اعداد المدربين التقنيين,الجامعة التقنية الوسطى
  • عادل كاظم ماشاف قسم تقنيات المكائن والمعدات, معهد اعداد المدربين التقنيين,الجامعة التقنية الوسطى

Keywords:

ارتفاع المركبة, القوى الديناهوائية, فرق الضغوط, تصميم التجارب, تحليل التباين

Abstract

في هذا البحث تم دراسة تغيير ارتفاع بدن السيارة نسبة الى مستوى الطريق والذي يتم فعلهُ من قبل بعض الاشخاص بصورة غير مدروسة في كثير من الاحيان. ان أسباب إجراء هذا التغيير قد تكون مختلفة لكن من دون وعي بالاثار السلبية الناتجة من هكذا تغيير خصوصا تلك التي لها علاقة بالقوى الديناهوائية المتولدة. لاجراء الدراسة, تم استخدام نفق هوائي مثبت في داخله موديل لسيارة سيدان Sedan يوفر قابلية لتغيير مستوى ارتفاع بدنهُ بسهولة لعدة قيم. كـما تم استخدام سرع خطية مختلفة للهواء. وقد استخدمت بعض الطرق الاحصائية مثل طريقة تحليل العاملية العامة General Full Factorial Method وتحليل التباين Analysis of Variance تم استخدامهما لاستقراء النتائج بصورة واضحة. اثبتت النتائج ان قوة الكبح تزداد بصورة كبيرة عند زيادة ارتفاع المركبة بالاخص في النقطة الامامية الا وهي نقطة الركود, مما قد يؤشر لتاثير سلبي على عمليات صرف الوقود والتلوث البيئي المصاحب.

In this study, the changing in ride height of the car, which is usually arbitrarily been made, has been investigated. Many reasons could be achieved when ride has been increased, but without consideration of the undesired outcomes such as the related aero-dynamical forces effect. In this study, wind tunnel with fixed sedan car model was used. The model was easily allowed changing of the ride height. A range of velocities had been used as well. The General Full Factorial Method and Analysis of Variance were the convenient analytical tools in this study. The results showed that the drag force increased when ride height increased, especially, at the fronted point (stagnation point) which might increase fuel consumption and related pollution.

Downloads

Download data is not yet available.

References

D. Dhande and M. Bauskar, “Analysis of Aerodynamic Aspects of SUV by Analytical and Experimental Method,” International Journal of Emerging Technology and Advanced Engineering, vol. 3, no. 7, pp. 447–451, 2013.

V. Barzanooni and A. B. Khoshnevis, “Experimental Study and wake Characteristics Comparison of a Car Model in Steady and Unsteady Flow,” Int J Advanced Design and Manufacturing Technology, vol. 8, no. 1, pp. 55–65, 2015.

A. Cieslinski, W. Prym, M. Stajuda, and D. Witkowski, “Investigation on Aerodynamics of Super–Effective Car for Drag Reduction,” Mechanics and Mechanical Engineering, vol. 20, no. 3, pp. 295–308, 2016.

S. Kumar and C.K. Umesh, “Analysis of External Aerodynamics of Sedan and Hatch Back Car Models Having Same Frontal Area by Computational Method,” International Journal of Research in Mechanical Engineering & Technology, vol. 6, no. 1, 2016.

R. B. Sharma and R. Bansal, “CFD Simulation for Flow over Passenger Car Using Tail Plates for Aerodynamic Drag Reduction,” IOSR Journal of Mechanical and Civil Engineering, vol. 7, no. 5, pp. 28–35, 2013.

N. Ashton, A. West, S. Lardeau, and A. Revell, “Assessment of RANS and DES methods for realistic automotive models,” Computers and Fluids, vol. 128, pp. 1–15, 2016.

M. Desai, S. A. Channiwala, and H. J. Nagarsheth, “A comparative assessment of two experimental methods for aerodynamic performance evaluation of a car,” Journal of Scientific & Industrial Research, vol. 67, pp. 518–522, 2008.

S. Kumar and C. K. Umesh, “Analysis of External Aerodynamics of Sedan and Hatch Back Car Models Having Same Frontal Area by Experimental Wind Tunnel Method,” International Journal of Research in Mechanical Engineering & Technology, vol. 3, no. 4, pp. 812–816, 2015.

M. Koike, T. Nagayoshi, and N. Hamamoto, “Research on Aerodynamic Drag Reduction by Vortex Generators,” Mitsubishi Motor Technical Papers, no. 16, pp. 11–16, 2004.

P. N. Selvaraju, K. M. Parammasivam, Shankar, and G. Devaradjane, “Analysis of Drag and Lift Performance in Sedan Car Model Using CFD,” Journal of Chemical and Pharmaceutical Sciences, no. special issue 7, pp. 429–435, 2015.

J. Singh and J. S. Randhawa, “CFD Analysis of Aerodynamic Drag Reduction of Automobile Car - A Review,” International Journal of Science and Research, vol. 3, no. 6, pp. 213–215, 2014.

A. Ahmed and M. A. Murtaza, “CFD Analysis of Car Body Aerodynamics Including Effect of Passive Flow Devices – A review,” International Journal of Research in Engineering and Technology, vol. 5, no. 3, pp. 141–144, 2016.

X. Zhang, W. Toet, and J. Zerihan, “Ground Effect Aerodynamics of Race Cars,” Applied Mechanics Reviews, vol. 59, pp. 33–49, 2006.

S. M. R. Hassan, T. Islam, M. Ali, and Q. Islam, “Numerical Study on Aerodynamic Drag Reduction of Racing Cars,” Procedia Engineering, vol. 90, pp. 308–313, 2014.

Published

2017-12-01

How to Cite

[1]
صادق عزيز حسين and عادل كاظم ماشاف, “تاثير زيادة ارتفاع بدن السيارة على القوى الديناهوائية المتولدة: Effect of Increasing Ride Height on The Generated Aero-Dynamical Forces”, DJES, vol. 10, no. 4, pp. 129–139, Dec. 2017.