Application of Polymeric Materials for 3D Printed Dentures: A review
Keywords:
PMMA, PEEK, 3D printing, denture, Polymer compositesAbstract
The development of three-dimensional printing technology (3D printing) has revolutionized the dental industry by providing a rapid, dependable, and affordable way to create a variety of dental products, including denture bases. This review article presents in-depth research on polymeric materials and their effect on different properties and aspects of dentures manufactured by 3D printing processes. This study indicated that Poly (methylmethacrylate) (PMMA) is a popular material in the 3D printing process of dentures. Despite its widespread use in dentures, more research is required to overcome some disadvantages like brittleness and poor mechanical qualities by utilizing additives to this material for improvement. The polyether ether ketone (PEEK) has remarkable mechanical and thermal properties and is perfect for dentures. A variety of medical and dental applications can benefit from Acrylonitrile butadiene styrene (ABS) toughness and chemical resistance, our review investigation uncovered several potential applications of ABS for printed dentures. Polylactic acid (PLA) is a biocompatible and biodegradable polymer derived from renewable resources and it has been used in dentures. However, additional study is required to enhance its performance in dentures. Furthermore, it was found that the most appropriate 3D printing technology for denture printing is the vat photopolymerization process. Advances in material qualities are assisting in the durable and biocompatible dental prostheses that meet the evolving needs of patients and doctors. Furthermore, in-depth evaluations of environmental sustainability and biocompatibility are essential for advancing the discipline ethically and responsibly.
Downloads
References
T. K. Vaidyanathan, J. Vaidyanathan, and D. Arghavani, “Elastic, viscoelastic and viscoplastic contributions to compliance during deformation under stress in prosthodontic temporization materials,” Acta Biomater. Odontol. Scand., vol. 2, no. 1, pp. 108–117, 2016, doi: 10.1080/23337931.2016.1219664.
A. Y. Alqutaibi, A. Baik, S. A. Almuzaini, A. E. Farghal, A. A. Alnazzawi, S. Borzangy, A. N. Aboalrejal, M. H. AbdElaziz, I. I. Mahmoud, and M. S. Zafar., “Polymeric Denture Base Materials: A Review,” Polymers (Basel)., vol. 15, no. 15, 2023, doi: 10.3390/polym15153258.
G. Masri. R. Mortada, H. Ounsi, N. Alharbi, P. Boulos, Z. Salameh., "Adaptation of complete denture base fabricated by conventional, milling, and 3-D printing techniques: an in vitro study", Journal of Contemporary Dental Practice (2020) 21(4) 367-371, https://doi.org/10.5005/jp-journals-10024-2770
G. Taormina, C. Sciancalepore, M. Messori, and F. Bondioli, "3D printing processes for photocurable polymeric materials : technologies, materials, and future trends", Journal of Applied Biomaterials and Functional Materials. 16 (2018), pp. 151–160,, doi: 10.1177/2280800018764770.
A. Kumar and R. K. Gupta, Fundamentals of polymer engineering. CRC Press, 2018,doi: 10.1201/9780429398506.
A. Y. Alqutaibi, A. Baik, S. A. Almuzaini, A. E. Farghal, A. A. Alnazzawi, S. Borzangy, A. N. Aboalrejal, M. H. AbdElaziz, I. I. Mahmoud, and M. S. Zafar., "Polymeric Denture Base Materials: A Review".,Polymers. 15 (2023), , doi:10.3390/polym15153258.
R. D. Singh, R. Gautam, R. Siddhartha, B. P. Singh, P. Chand, V. P. Sharma, S. K. Jurel., “High performance liquid chromatographic determination of residual monomer released from heat-cured acrylic resin. An in vivo study.,” Journal of Prosthodontics (2013) 22(5) 358-361,doi:10.1111/jopr.12004
S. Alazzawi, W. A. Mahmood, and S. K. Shihab,. "Comparative study of Natural Fiber-Reinforced composites for sustainable thermal insulation inconstruction",. International Journal of Thermofluids (2024) 24,doi: 10.1016/j.ijft.2024.100839
M. S. Zafar, “Prosthodontic Applications of Polymethyl Methacrylate (PMMA): An Update.,” Polymers (Basel)., vol. 12, no. 10, Oct. 2020, doi: 10.3390/polym12102299.
G. Oberoi, S. Nitsch, M. Edelmayer, K. Janjić, A. S. Müller, and H. Agis, “3D Printing—encompassing the facets of dentistry,” Front. Bioeng. Biotechnol., vol. 6, p. 172, 2018, doi: 10.3389/fbioe.2018.00172.
F. Rezaie, M. Farshbaf, M. Dahri, M. Masjedi, and R. Maleki ., "3D Printing of Dental Prostheses: Current and Emerging Applications," J. Compos. Sci., vol. 7, p. 80, Feb. 2023, doi: 10.3390/jcs7020080.
M. Ozcan, “Additive Manufacturing Technologies Used for Processing Polymers : Current Status and Potential Application in,” vol. 0, no. Fig 1, pp. 1–13, 2018, doi: 10.1111/jopr.12801.
J. Lee, J. An, and C. K. Chua, “Fundamentals and applications of 3D printing for novel materials,” Appl. Mater. Today, vol. 7, pp. 120–133, 2017, doi: 10.1016/j.apmt.2017.02.004.
M. A. Ahmed and M. I. Ebrahim, “Effect of Zirconium Oxide Nano-Fillers Addition on the Flexural Strength, Fracture Toughness, and Hardness of Heat-Polymerized Acrylic Resin,” no. June, pp. 50–57, 2014,doi: 10.4236/wjnse.2014.42008.
C. Zaharia, A. G. Gabor, A. Gavrilovici, A. T. Stan, L. Idorasi, C. Sinescu, M. L. Negruțiu., “Digital Dentistry — 3D Printing Applications,” J. Interdiscip. Med., vol. 2, no. 1, pp. 50–53, 2017, doi: 10.1515/jim-2017-0032.
M. Gonzalez, A. Dugarte, and S. Kiat-amnuay, “Impact Strength of 3D Printed and Conventional Heat-Cured and Cold-Cured Denture Base Acrylics”, M.S.dissertation,Dept. Scie. Dentis., Texas School of Dentistry Univ., Houston,2020.
X. Wu, “Research and Design of Denture Manufacturing Production,” International Journal of Materials Science and Technology Studies,3006-3744 V.(1), No(2) , 2024,doi: https://doi.org/10.62051/ijmsts.v1n2.05.
S. C. Ligon, R. Liska, M. Gurr, R. Mu, H. B. F. D. Gmbh, A. D. R. Bleiche, and L. D-., “Polymers for 3D Printing and Customized Additive Manufacturing,” Chemical Reviews. 117 (2017), pp. 10212–10290, doi: 10.1021/acs.chemrev.7b00074.
C. Mendes-Felipe, D. Patrocinio, J. M. Laza, L. Ruiz-Rubio, and J. L. Vilas-Vilela, “Evaluation of postcuring process on the thermal and mechanical properties of the Clear02TM resin used in stereolithography,” Polym. Test., vol. 72, pp. 115–121, 2018, doi: 10.1016/j.polymertesting.2018.10.018.
B. Materials, D. Kim, J. Shim, D. Lee, S. Shin, and N. Nam, “Eff ects of Post-Curing Time on the Mechanical and Color Properties of Three-Dimensional Printed” Polymers 2020, 12, 2762; doi:10.3390/polym12112762.
N. Silikas and H. Devlin, “Assessing the physical and mechanical properties of 3D printed acrylic material for denture base,” Dent. Mater., vol. 38, no. 12, pp. 1841–1854, 2022, doi: 10.1016/j.dental.2022.09.006.
A. Altarazi, J. Haider, A. Alhotan, N. Silikas, and H. Devlin, “Assessing the physical and mechanical properties of 3D printed acrylic material for denture base application,” Dent. Mater., vol. 38, no. 12, pp. 1841–1854, 2022, doi: 10.1016/j.dental.2022.09.006.
L. P. Nori and S. S. Manikiran, “An outlook on regulatory aspects of 3D printing in pharmaceutical and medical sectors,”, Current Trends in Pharmacy and Pharmaceutical Chemistry (2022) 4(3) 98-108 doi: 10.18231/j.ctppc.2022.017.
Mudhaffer, S., Althagafi, R., Haider, J., Satterthwaite, J. and Silikas, N., "Effects of printing orientation and artificial aging on martens’ hardness and indentation modulus of 3D printed restorative resin materials." Dental Materials (2024) 40(7) 1003-1014doi: 10.1016/j.dental.2024.05.005.
M. Kanazawa, M. Inokoshi, S. Minakuchi, and N. Ohbayashi, “Trial of a CAD / CAM system for fabricating complete dentures,” vol. 30, no. 1, pp. 93–96, 2011, doi: 10.4012/dmj.2010-112.
D. Kumar, A. K. Mishra, V. Rani, S. Priyadarshi, V. Sharma, S. Kharat, “Comparison of Mechanical Properties, Physical Properties & Biocompatibility of Four Different Denture Base Resins: An In Vitro Study.” Journal of Pharmacy and Bioallied Sciences (2023) 15(6) S964-S967,doi: 10.4103/jpbs.jpbs_264_23.
G. S. Hashmi, "Recent Advances in Dental Composites : A Review Complimentary Contributor Copy", Advanced Functional Polymers and Composites. V(1) N.p., 2015.
B. Abdulmohsen, S. Parker, M. Braden, and M. P. Patel, “A study to investigate and compare the physicomechanical properties of experimental and commercial temporary crown and bridge materials,” Dental Materials (2016) 32(2) 200-210,doi: 10.1016/j.dental.2015.11.025.
T. Nejatian, S. Pezeshki, and A. U. Y. Syed, “Acrylic denture base materials,” in Advanced Dental Biomaterials, Elsevier, 2019, pp. 79–104 In Advanced Dental Biomaterials (pp. 79-104). Woodhead Publishing, doi: 10.1016/B978-0-08-102476-8.00005-0.
C. K. Mayfield, M. Ayad, E. Lechtholz-Zey, Y. Chen, and J. R. Lieberman, “3D-Printing for critical-sized bone defects: Current concepts and future directions,” Bioengineering, vol. 9, no. 11, p. 680, 2022,doi: 10.3390/bioengineering9110680.
E. E. Totu, A. C. Nechifor, G. Nechifor, H. Y. Aboul-Enein, and C. M. Cristache, “Poly (methyl methacrylate) with TiO2 nanoparticles inclusion for stereolitographic complete denture manufacturing− the fututre in dental care for elderly edentulous patients?,” J. Dent., vol. 59, pp. 68–77, 2017 ,doi: 10.1016/j.jdent.2017.02.012.
S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Shoemaker, P. A. Thiessen, B. Yu ., "PubChem 2019 update: improved access to chemical data,", Nucleic Acids Res., vol. 47, no. D1, pp. D1102–D1109, 2019, doi: 10.1093/nar/gky1033.
B. A. Sabri, M. Satgunam, N. M. Abreeza, and A. N. Abed, “A review on enhancements of PMMA Denture Base Material with Different Nano-Fillers MATERIALS ENGINEERING | REVIEW ARTICLE A review on enhancements of PMMA Denture Base Material with Different Nano-Fillers,” Cogent Eng., vol. 8, no. 1, 2021, doi: 10.1080/23311916.2021.1875968.
A. Naji, J. Kashi, ; Behroozibakhsh, ; Hajizamani, and M. Behroozibakhsh, “Recent Advances and Future Perspectives for Reinforcement of Poly(methyl methacrylate) Denture Base Materials: A Literature Review Advances and Future Perspectives for Reinforcement of Poly(methyl methacrylate) Denture Base Materials: A Literature Review,” J. Dent. Biomater., vol. 5, no. 1, pp. 489–501, 2018.
M. M. Gad, A. M. Al-thobity, A. Rahoma, R. Abualsaud, F. A. Al-harbi, and S. Akhtar, “Reinforcement of PMMA Denture Base Material with a Mixture of ZrO 2 Nanoparticles and Glass Fibers,” International Journal of Dentistry, 2019. https://doi.org/10.1155/2019/2489393.
S.-G. Chen, J. Yang, Y.-G. Jia, B. Lu, and L. Ren, “TiO2 and PEEK Reinforced 3D Printing PMMA Composite Resin for Dental Denture Base Applications,” Nanomaterials, vol. 9, no. 7, 2019, doi: 10.3390/nano9071049.
M. A. Ahmed and M. I. Ebrahim, “Effect of Zirconium Oxide Nano-Fillers Addition on the Flexural Strength, Fracture Toughness, and Hardness of Heat-Polymerized Acrylic Resin,” no. January 2014, 2016, doi 10.4236/wjnse.2014.42008.
J. Sun, L. Yao, Q. L. Zhao, J. Huang, R. Song, Z. Ma, L. H. He, W. Huang, and Y. M. Hao ., “Modification on the crystallization of poly (vinylidene fluoride)(PVDF) by solvent extraction of poly (methyl methacrylate)(PMMA) in PVDF/PMMA blends,” Front. Mater. Sci., vol. 5, pp. 388–400, 2011, doi: 10.1007/s11706-011-0152-2.
A. Mithran, J. Rakhra, S. K. Jain, and M. Chikkanna, “Comparative evaluation of impact strength of mechanically modified heat polymerized polymethyl methacrylate ( PMMA ) resin with nanoparticles ( AgNPs ): An in-vitro study,” no. November, 2023, doi: 10.4103/jos.jos.
M. M. Gad, F. A. Al‐Harbi, S. Akhtar, and S. M. Fouda, “3D‐printable denture base resin containing SiO2 nanoparticles: An in vitro analysis of mechanical and surface properties,” Journal of Prosthodontics, 31(9), 784–790. https://doi.org/10.1111/jopr.13483.
M. P. Costa, V. Mosquim, R. Francisco, L. Mondelli, and L. Wang, “Integrated effect of fillers , monomers and bioactive ingredients on color stability of resin composites,” vol. 38, pp. 1–13 DOI: https://doi.org/10.21203/rs.3.rs-1736086/v1.
Z. N. Al-Dwairi, A. A. Al Haj Ebrahim, and N. Z. Baba, “A Comparison of the Surface and Mechanical Properties of 3D Printable Denture-Base Resin Material and Conventional Polymethylmethacrylate (PMMA),” J. Prosthodont., vol. 32, no. 1, pp. 40–48, 2023, doi: 10.1111/jopr.13491.
M. Srinivasan, N. Kalberer, P. Kamnoedboon, M. Mekki, S. Durual, M. Özcan,and F. Müller ., “CAD-CAM complete denture resins: An evaluation of biocompatibility, mechanical properties, and surface characteristics,” J. Dent., vol. 114, p. 103785, 2021,doi: 10.1016/j.jdent.2021.103785.
L. Lin, Y. Fang, Y. Liao, G. Chen, C. Gao, and P. Zhu, “3D Printing and Digital Processing Techniques in Dentistry : A Review of Literature,” vol. 1801013, pp. 1–28, 2019, doi: 10.1002/adem.201801013.
H. Cai, X. Xu, X. Lu, M. Zhao, Q. Jia, H. B. Jiang, and J. S. Kwon., “Dental Materials Applied to 3D and 4D Printing Technologies: A Review,” Polymers (Basel)., vol. 15, no. 10, 2023, doi: 10.3390/polym15102405.
M. Wieckiewicz, V. Opitz, G. Richter, and K. W. Boening, “Physical Properties of Polyamide-12 versus PMMA Denture Base Material,” BioMed Research International (2014) 2014,doi: 10.1155/2014/150298.
A. Altarazi, J. Haider, A. Alhotan, N. Silikas, and H. Devlin, “3D printed denture base material: The effect of incorporating TiO2 nanoparticles and artificial aging on the physical and mechanical properties,”Dental Materials (2023) 39(12) 1122-1136 ,doi: 10.1016/j.dental.2023.10.005
N. W. Elshereksi, S. H. Mohamed, A. Arifin, and Z. A. Mohd Ishak, “Thermal Characterisation of Poly (Methyl Methacrylate) Filled with Barium Titanate as Denture Base Material.,” J. Phys. Sci., vol. 25, no. 2, 2014 , ISSN: 21804230.
A. Khattar, I. A. Almindil, M. H. Alsaif, S. Akhtar, S. Q. Khan, M. M. Gad., “3D-Printed Nanocomposite Denture-Base Resins: Effect of ZrO2 Nanoparticles on the Mechanical and Surface Properties In Vitro,” Nanomaterials, vol. 12, no. 14, 2022, doi: 10.3390/nano12142451.
M. M. Gad, S. M. Fouda, F. A. Al-Harbi, R. Näpänkangas, and A. Raustia, “PMMA denture base material enhancement: a review of fiber, filler, and nanofiller addition,” Int. J. Nanomedicine, pp. 3801–3812, 2017,doi: 10.2147/IJN.S130722.
P. Chaijareenont, H. Takahashi, N. Nishiyama, and M. Arksornnukit, “Effects of silane coupling agents and solutions of different polarity on PMMA bonding to alumina,” vol. 31, no. 4, pp. 610–616, 2012, doi: 10.4012/dmj.2012-040.
N. Alharbi, S. Alharbi, V. M. J. I. Cuijpers, R. B. Osman, and D. Wismeijer, “Three-dimensional evaluation of marginal and internal fi t of 3D-printed interim restorations fabricated on different fi nish line designs,” J. Prosthodont. Res., vol. 62, no. 2, pp. 218–226, 2018, doi: 10.1016/j.jpor.2017.09.002.
K. Puebla, K. Arcaute, R. Quintana, and R. B. Wicker, “Effects of environmental conditions , aging , and build orientations on the mechanical properties of ASTM type I specimens manufactured via stereolithography,” Rapid Prototyping Journal (2012) 18(5) 374-388,, doi: 10.1108/13552541211250373.
A. Della Bona, V. Cantelli, V. T. Britto, K. F. Collares, and J. W. Stansbury, “3D printing restorative materials using a stereolithographic technique: a systematic review,” Dent. Mater., vol. 37, no. 2, pp. 336–350, 2021,doi: 10.1016/j.dental.2020.11.030.
H. Kim, K. H. Ryu, D. Baek, T. A. Khan, H. J. Kim, S. Shin, J. Hyun, J. S. Ahn, S. J. Ahn, H. J. Kim ., “3D printing of polyethylene terephthalate glycol–sepiolite composites with nanoscale orientation,” ACS Appl. Mater. Interfaces, vol. 12, no. 20, pp. 23453–23463, 2020, doi: 10.1021/acsami.0c03830.
A. Unkovskiy, P. H.-B. Bui, C. Schille, J. Geis-Gerstorfer, F. Huettig, and S. Spintzyk, “Objects build orientation, positioning, and curing influence dimensional accuracy and flexural properties of stereolithographically printed resin,” Dent. Mater., vol. 34, no. 12, pp. e324–e333, 2018,doi: 10.1016/j.dental.2018.09.011.
A. Katheng, M. Kanazawa, M. Iwaki, and S. Minakuchi, “Evaluation of dimensional accuracy and degree of polymerization of stereolithography photopolymer resin under different postpolymerization conditions: an in vitro study,” J. Prosthet. Dent., vol. 125, no. 4, pp. 695–702, 2021,doi: 10.1016/j.prosdent.2020.02.023.
Z. Quan and T. Chou, "Additive Manufacturing of Multidirectional Preforms and Composites: Microstructural Design, Fabrication, and Characterization". Springer Singapore, (2019), 2353-2406,doi: 10.1007/978-981-10-6884-3_58.
A. M. Nagrath, A. Sikora, J. Graca, J. L. Chinnici, S. U. Rahman, G. Sharaschandra, S. Ponnusamy, A. Maddi, R. Praveen ., “Functionalized prosthetic interfaces using 3D printing: Generating infection-neutralizing prosthesis in dentistry,” Materials TodayCommunications ,2018, https://doi.org/10.1016/j.mtcomm.2018.02.016.
M. Dimitrova, A. Vlahova, R. Kazakova, and B. Chuchulska, “3D -Printed vs . Heat -Cured Denture Base Materials - Composition and Properties -A Review,” International Journal Dental and Medical Sciences Research,,V(5),I(4). pp. 3–7, 2023, doi: 10.35629/5252-05049295.
Y. J. Chung, J. M. Park, T. H. Kim, J. S. Ahn, H. S. Cha, and J. H. Lee, “3D Printing of Resin Material for Denture Artificial Teeth : Chipping and Indirect Tensile Fracture Resistance,” Materials 2018, 11, 1798, pp. 1–13, doi: 10.3390/ma11101798.
A. Kubacka, M. Ferrer, and M. Fernández-garcía, “Author ’ s personal copy Applied Catalysis B : Environmental Kinetics of photocatalytic disinfection in TiO 2 -containing polymer thin films : UV and visible light performances”, doi: 10.1016/j.apcatb.2012.03.016.
A. Eugenia, E. Totu, A. C. Nechifor, G. Nechifor, H. Y. Aboul-enein, and C. Marilena, "Poly(methyl metacrylate) TiO2 nanocomposite for stereolithographic complete denture manufacturing.", Journal of Dentistry, February, 2017. doi: 10.1016/j.jdent.2017.02.012.
E. Marin, M. Mukai, F. Boschetto, T. P. M. Sunthar, T. Adachi, W. Zhu, A. Rondinella, A. Lanzutti, N. Kanamura, and T. Yamamoto., “Production of antibacterial PMMA-based composites through stereolithography,” Mater. Today Commun., vol. 32, p. 103943, 2022,doi:10.1016/j.mtcomm.2022.103943.
Zahari, N.A.F.H., Farid, D.A.M., Alauddin, M.S., Said, Z., Ghazali, M.I.M., Lee, H.E. and Zol, S.M., " Development of 3-dimensionally printed denture base material utilizing hybrid polymer: A preliminary investigation.", Journal of Prosthetic Dentistry (2024) doi: 10.1016/j.prosdent.2024.07.017.
Y. Wang, D. Yang, M. M. Hessien, K. Du, M. M. Ibrahim, Y. Su, G. A. M. Mersal, R. Ma, S. M. El-Bahy, and M. Huang., “Flexible barium titanate@ polydopamine/polyvinylidene fluoride/polymethyl methacrylate nanocomposite films with high-performance energy storage,” Adv. Compos. Hybrid Mater., vol. 5, no. 3, pp. 2106–2115, 2022,doi: 10.1007/s42114-022-00552-w.
E. Wintermantel and S.-W. Ha, Medizintechnik: Life Science Engineering. Springer Science & Business Media, Springer Berlin Heidelberg, (2008) doi: 10.1007/978-3-540-74925-7.
S. W. Ha, M. Kirch, F. Birchler, K. L. Eckert, J. Mayer, E. Wintermantel, C. Sittig, I. Pfund-Klingenfuss, M. Textor, N. D. Spencer, M. Guecheva, and H. Vonmont, “Surface activation of polyetheretherketone (PEEK) and formation of calcium phosphate coatings by precipitation.,” J. Mater. Sci. Mater. Med., vol. 8, no. 11, pp. 683–690, Nov. 1997, doi: 10.1023/a:1018535923173.
P. Scolozzi, A. Martinez, and B. Jaques, “Complex orbito-fronto-temporal reconstruction using computer-designed PEEK implant.,” J. Craniofac. Surg., vol. 18, no. 1, pp. 224–228, Jan. 2007, doi: 10.1097/01.scs.0000249359.56417.7e.
H. Ma, A. Suonan, J. Zhou, Q. Yuan, L. Liu, X. Zhao, X. Lou, C. Yang, D. Li, and Y. Zhang ., “PEEK (Polyether-ether-ketone) and its composite materials in orthopedic implantation,” Arab. J. Chem., vol. 14, no. 3, p. 102977, 2021,doi: 10.1016/j.arabjc.2020.102977.
I. V. Panayotov, V. Orti, F. Cuisinier, and J. Yachouh, “Polyetheretherketone (PEEK) for medical applications.,” J. Mater. Sci. Mater. Med., vol. 27, no. 7, p. 118, Jul. 2016, doi: 10.1007/s10856-016-5731-4.
A. Haleem and M. Javaid, “Polyether ether ketone (PEEK) and its manufacturing of customised 3D printed dentistry parts using additive manufacturing,” Clin. Epidemiol. Glob. Heal., vol. 7, no. 4, pp. 654–660, 2019, doi: 10.1016/j.cegh.2019.03.001.
F. Guo, S. Huang, N. Liu, M. Hu, C. Shi, D. Li, and C. Liu ., “Evaluation of the mechanical properties and fit of 3D-printed polyetheretherketone removable partial dentures,” Dent. Mater. J., vol. 41, no. 6, pp. 816–823, 2022, doi: 10.4012/dmj.2022-063.
V. B. Benakatti, J. A. Sajjanar, and A. Acharya, “Polyetheretherketone (PEEK) in Dentistry,” J. Clin. Diagnostic Res., vol. 13, no. 8, pp. 13–15, 2019, doi: 10.7860/jcdr/2019/41965.13103.
Y. Sun, S. Gao, F. Lei, and Y. Xie, “Chem Soc Rev,” Chem. Soc. Rev., 2014, doi: 10.1039/C4CS00236A.
N. Lümkemann, M. Eichberger, and B. Stawarczyk, “Bonding to Different PEEK Compositions: The Impact of Dental Light Curing Units,” Materials (Basel)., vol. 10, no. 1, 2017, doi: 10.3390/ma10010067.
N. M. Fadhil, “CAD – CAM , 3D Printing Denture Base and Heat Cure Introduction :,” Tikrit Journal for Dental Sciences 11(2) (2023) 188-197, 2023,https://doi.org/10.25130/tjds.11.2. 5.
A. M. E. Arefin, N. R. Khatri, N. Kulkarni, and P. F. Egan, “Polymer 3D printing review: Materials, process, and design strategies for medical applications,” Polymers (Basel)., vol. 13, no. 9, pp. 1–24, 2021, doi: 10.3390/polym13091499.
T. J. Quill, M. K. Smith, and T. Zhou, “Thermal and mechanical properties of 3D printed boron nitride – ABS composites,” Applied Composite Materials (2018) 25(5) 1205-1217,doi: 10.1007/s10443-017-9661-1.
J. Butt and R. Bhaskar, “Investigating the effects of annealing on the mechanical properties of FFF-printed thermoplastics,” J. Manuf. Mater. Process., vol. 4, no. 2, p. 38, 2020, doi: 10.3390/jmmp4020038.
A. M. E. Arefin, N. R. Khatri, N. Kulkarni, and P. F. Egan, “Polymer 3D printing review: Materials, process, and design strategies for medical applications,” Polymers (Basel)., vol. 13, no. 9, p. 1499, 2021, doi: 10.3390/polym13091499.
I. Karakurt and L. Lin, “3D printing technologies: techniques, materials, and post-processing,” Curr. Opin. Chem. Eng., vol. 28, pp. 134–143, 2020.
T. Tagami, N. Nagata, N. Hayashi, E. Ogawa, K. Fukushige, N. Sakai, and T. Ozeki ., Defined drug release from 3D-printed composite tablets consisting of drug-loaded polyvinylalcohol and a water-soluble or water-insoluble polymer filler, vol. 543, no. 1–2. 2018. doi: 10.1016/j.ijpharm.2018.03.057.
M.H. Uddin, M.Nur-E-Alam, A. Manap, B.K.Yap, and M. Rokonuzzaman, “Evaluation of the Mechanical Properties of PLA Material Used For 3D Printing Solar E-Hub Component,”. Diyala Journal of Engineering Sciences, pp.163-172, 2024. doi: 10.24237/djes.2024.17311
J. R. Anderson, W. L. Thompson, A. K. Alkattan, O. Diaz, R. Klucznik, Y. J. Zhang, G. W. Britz, R. G. Grossman, and C. Karmonik ., “Three-dimensional printing of anatomically accurate, patient specific intracranial aneurysm models,” J. Neurointerv. Surg., vol. 8, no. 5, pp. 517–520, 2016, doi: 10.1136/neurintsurg-2015-011686.
L. Mendes, A. Kangas, K. Kukko, B. Mølgaard, A. Säämänen, T. Kanerva, I. I. Flores M. Huhtiniemi, H. Stockmann-Juvala, J. Partanen, K. Hämeri, K. Eleftheriadis, and A. K. Viitanen ., “Characterization of Emissions from a Desktop 3D Printer,” J. Ind. Ecol., vol. 21, no. 0, pp. S94–S106, 2017, doi: 10.1111/jiec.12569.
L. Yang, B. Grottkau, Z. He, and C. Ye, “Three dimensional printing technology and materials for treatment of elbow fractures,” 2017, doi: 10.1007/s00264-017-3627-7.
K. A. Evans, Z. C. .Kennedy, B. W. .Arey, J. F. Christ, H. T. Schaef, S. K.Nune, R. L. Erikson ., “Chemically Active, Porous 3D-Printed Thermoplastic Composites,” ACS Appl. Mater. Interfaces, vol. 10, no. 17, pp. 15112–15121, 2018, doi: 10.1021/acsami.7b17565.
J. Prakash, M. Shenoy, A. Alhasmi, A. A. Al Saleh, S. G. C, and S. Shivakumar, “Biocompatibility of 3D-Printed Dental Resins: A Systematic Review,” Cureus, vol. 16, no. 1, pp. 1–12, 2024, doi: 10.7759/cureus.51721.
H. Lodi, M. Campos, and A. Reis, “Mechanical, chemical and biological properties of PLA 3D printer: A systematic review,” Res. Soc. Dev., vol. 12, p. e126121243986, Nov. 2023, doi: 10.33448/rsd-v12i12.43986.
K. Deng, H. Chen, Y. Zhao, and Y. Zhou, “Evaluation of adaptation of the polylactic acid pattern of maxillary complete dentures fabricated by fused deposition modelling technology : A pilot study,” Plos one, pp. 1–11, 2018, doi: 10.1371/journal.pone.0201777.
K. H. Deng, Y. Wang, H. Chen, Y. J. Zhao, Y. S. Zhou, and Y. C. Sun, “[Quantitative evaluation of printing accuracy and tissue surface adaptation of mandibular complete denture polylactic acid pattern fabricated by fused deposition modeling technology],” Zhonghua Kou Qiang Yi Xue Za Zhi, vol. 52, no. 6, p. 342—345, 2017, doi: 10.3760/cma.j.issn.1002-0098.2017.06.004.
H. Kihara, S. Sugawara, J. Yokota, K. Takafuji, S. Fukazawa, A. Tamada, W. Hatakeyama, and H. Kondo ., “Applications of three-dimensional printers in prosthetic dentistry.,” J. Oral Sci., vol. 63, no. 3, pp. 212–216, Jun. 2021, doi: 10.2334/josnusd.21-0072.
M. R. de Campos, S. Kreve, G. G. da Silva, M. L. da Costa Valente, and A. C. dos Reis, “Mechanical and microstructural analysis of a new model of attachments for overdentures retained by mini-implants obtained by 3D printing with three different polymers,” Polym. Bull., vol. 81, no. 4, pp. 3297–3313, 2024, doi: 10.1007/s00289-023-04871-w.
Published
How to Cite
Issue
Section
Copyright (c) 2024 Alaa Raad Ali, Suha Shihab, Sheymaa Alazzawi, Jabbar Gattmah
This work is licensed under a Creative Commons Attribution 4.0 International License.